Problem Sheet 11

Problem 1

Let p be an odd prime.

- (a) Given $n \ge 1$, take its *p*-adic expansion $n = a_0 + a_1 p + \ldots + a_r p^r$, $0 \le a_i \le p 1$, and define $s_p(n) = \sum_{i=0}^r a_i$. Show that $v_p(n!) = (n s_p(n))/(p 1)$.
- (b) Prove that for $x \in \mathbb{Z}_p$, the series

$$(1+p)^x := 1 + \sum_{n=1}^{\infty} \frac{x(x-1)\cdots(x-n+1)}{n!} p^n$$

converges to an element in \mathbb{Z}_p and that $(1+p)^x(1+p)^y = (1+p)^{x+y}$.

(c) Deduce that $x \mapsto (1+p)^x$ defines an isomorphism of abelian groups $(\mathbb{Z}_p, +) \cong (1+p\mathbb{Z}_p, \times)$ and conclude that

$$\mathbb{Z}_p^{\times} \cong (\mathbb{Z}/p)^{\times} \times \mathbb{Z}_p$$

Problem 2

- Let $K = \bigcup_n \mathbb{C}((t^{1/n}))$ be the field of Puiseux series; set $\mathcal{O}_K := \bigcup_n \mathbb{C}[[t^{1/n}]].$
- (a) Show that $v: K \to \mathbb{Q} \cup \{\infty\}$, $v(f) := \deg(f)$ defines a valuation with valuation ring \mathcal{O}_K . Prove that the maximal ideal of \mathcal{O}_K is not finitely generated.
- (b) Let $\widehat{\mathcal{O}_K}$ be the *t*-adic completion of \mathcal{O}_K . Write down an element of $\widehat{\mathcal{O}_K} \setminus \mathcal{O}_K$.

Problem 3

(a) Let R be a ring and $f \in R$ a non-zero divisor. Assume that R is (f)-adically complete and that $\overline{R} = R/(f)$ is a perfect ring in characteristic p. (This means that the Frobenius $x \mapsto x^p$ defines an automorphism of \overline{R} .) Show that there is a unique multiplicative section $[\cdot]: \overline{R} \to R$ to the projection $R \to \overline{R}$. It is called the Teichmüller lift.

Hint: For $r \in \overline{R}$, denote by $\tilde{r} \in R$ any lift. Show that the following sequence converges,

$$\left(\widetilde{r^{1/p^n}}\right)^{p^n}$$

- (b) Assume R is itself of characteristic p. Show that the Teichmüller lift is then a ring homomorphism and that $R \cong \overline{R}[[f]]$.
- (c) Assume that F/\mathbb{Q}_p is a finite extension and that $R = \mathcal{O}_F$ with uniformizer π and residue field \mathbb{F}_q . Show that for every $x \in \mathbb{F}_q$ there is a unique (q-1)-st root of unity $\zeta \in R$ with $\zeta \equiv x \mod \pi R$ and that $[x] = \zeta$.